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Abstract

Uncertainty quantification is an important part of many per-
formance critical applications. This paper provides a simple
alternative to existing approaches such as ensemble learning
and bayesian neural networks. By directly modeling the loss
distribution with an Implicit Quantile Network, we get an es-
timate of how uncertain the model is of its predictions. For ex-
periments with MNIST and CIFAR datasets, the mean of the
estimated loss distribution is 2x higher for incorrect predic-
tions. When data with high estimated uncertainty is removed
from the test dataset, the accuracy of the model goes up as
much as 10%. This method is simple to implement while of-
fering important information to applications where the user
has to know when the model could be wrong. (e.g. deep learn-
ing for healthcare).

Introduction

The revolution in deep learning has led to many profound
consequences across different fields. As deep learning mod-
els become more and more integrated into industry, uncer-
tainty quantification becomes more and more important to
ensure the safety of the users and the performance of the
software. Many prior work has tried to tackle this prob-
lem by changing the main model architecture itself, lead-
ing to variants of neural networks such as bayesian neural
networks. However, these approaches still fall short of en-
semble models and dropout (Srivastava et al. 2014; Gal and
Ghahramani 2016), and sometimes even decrease in accu-
racy compared to vanilla models. (Ovadia et al. 2019) We
propose a simple add-on to any deep learning model that
would benefit from uncertainty quantification. By repurpos-
ing Implicit Quantile Network to predict the loss distribu-
tion of the prediction model on the training set, we can get
an estimate of the uncertainty of the model on the test set.
This approach does not require any architecture change to
the vanilla model and does not require as much compute as
ensemble models to train many independent copies of the
same model.

Background / Related Work
Implicit Quantile Networks for Distributional
Reinforcement Learning

Deep Q Network agents are a class of reinforcement learn-
ing algorithms that uses Q learning to try to learn a policy

that would maximize the expected return (Mnih et al. 2013).
However, these agents often output a single scalar estimate
of the return value, which does not take into account the ran-
domness of its environments. Implicit Quantile Network was
proposed by Dabney (Dabney et al. 2018) to introduce a new
DQN-like agent that approximates the entire distribution of
the return value instead of regressing the expected value. By
randomly sampling 7 ~ U([0,1]), we can approximate a
value for each quantile (aka percentile) of the distribution.
During inference, batches of 7 are sampled to approximate
the true distribution. IQN outperforms DQN by a wide mar-
gin both in terms of sample efficiency and final performance.
A proposed explanation for this gap is that IQN does not suf-
fer from noisy gradients where the scalar target varies signif-
icantly due to the inherent randomness of its environment.
IQN uses a quantile regression loss to try to approximate a
better distribution target given its current predicted distribu-
tion.

Ensemble Models

Ensemble Models (Parker 2013) is an approach to model-
ing uncertainty by training many independent copies of the
same model. By doing so, any disagreement among these
models can be labeled as uncertainty. By using significantly
more compute, these models are robust when given data that
are out of distribution because predictions from independent
copies will disagree with each other when their predictions
are wrong or if the data is out-of-distribution. Empirically,
this method yields the best results in terms of accuracy and
uncertainty quantification.

Dropout for Uncertainty Estimation

Another approach to estimate uncertainty is to use dropout
(Srivastava et al. 2014; Gal and Ghahramani 2016). If the
model is certain of its prediction, then dropping some units
along with their connections will still result in the same pre-
diction. However, if the predictions vary, then the difference
in output can be interpreted as uncertainty. Some approaches
try to incorporate dropout at training time while other work
try to mimic an ensemble of models by only incorporating
dropout at test time.



Bayesian Neural Networks

Bayesian Neural Networks attempt to quantify uncertainty
by learning a posterior distribution of the weights. There-
fore, each weight sample produces different outputs to form
a distribution which captures the modes of the output. Al-
though there are theoretical benefits for using BNN, it can
be computationally expensive and sometimes fall short in
accuracy.

Preliminaries

We briefly review the formulation for training IQN. Instead
of the computing Q(z, a), we define Z(z, a) as the distribu-
tion of all possible returns. Then, we can get Q(s,a) from
Z(S, a) given Q/@(ﬂj, a) = ETNU([O,l]) [Zﬁ(T) (x, a)} . The
policy would simply be to maximize the expectation where
wg(x) = argmax,ea@Qp(x,a). During training, we ran-
domly sample 7 ~ U(]0, 1]) and use the quantile regression
loss (Huber 1992) to minimize the TD-errors. Formally,
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Then, we can train the quantile estimates with threshold
k. (Alternatively, we can use the mean squared error loss
instead of the huber loss for quantile regression)
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For two samples 7,7’ ~ U([0,1]), and policy 7, the
sampled temporal difference (TD) error at step ¢ is
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where N and N’ denote the respective number of iid sam-
ples 7;, 7} ~ U([0, 1]) used to estimate the loss. Intuitively,
for a given 7; = 0.75, the pareto optimal point would be at
the 75th percentile of all the observed values where the er-
rors from the left and right hold equal weight, since negative
errors are weighted 0.25 and positive errors are weighted
0.75.

Modeling Loss with Implicit Quantile Network

In the reinforcement learning setting, Implicit Quantile Net-
work takes in a state and sample many 7 ~ U([0,1]) to
output an approximated distribution of Q values. For our
work, we aim to quantify uncertainty using IQN for the su-
pervised learning setting. During training, we sample 7; to
approximate the distribution of the loss scalar, although we
setthe N = 64 and N’ = 1, the model can still approximate
the loss distribution over many iterations as the quantiles are
trained to converge to its respective values.

Existing work has only used IQN to model rewards in re-
inforcement learning settings. This paper shows that we can
directly predict the loss of the supervised learning model to
get an estimated error which can then be used to quantify
how certain a model is about its prediction. This approach
requires additional compute by training a separate neural
network that approximates the loss distribution of the origi-
nal model after training.

Before regressing the loss, we train the main model on the
dataset as usual, the trained weights are then transferred to
the IQN after training which is then re-trained to predict the
loss distribution on the training set.

For all experiments, N taus are sampled at each itera-
tion with each representing a percentile of the distribution.
The IQN then outputs a predicted loss distribution based on
the tau values which is then trained using the quantile re-
gression loss. We hypothesize that estimating loss quantifies
both aleatoric uncertainty (data uncertainty) and epistemic
uncertainty (model uncertainty) since it is both a measure of
poorly labeled data and suboptimal weights.

Experiments

This simple approach is tested on common image classi-
fication benchmarks including MNIST and CIFAR (Deng
2012; Krizhevsky, Hinton et al. 2009) to determine whether
IQN can correctly predict which images the model is
more likely to get wrong. Since the increased accuracy
could be a direct result of estimating the loss, exper-
iments are also done for models where we only pre-
dict a scalar estimate to benchmark against the gains
of predicting a distribution. Code is released on Github.
https://github.com/YHLO4/confidenceiqgn

Experiment Setting

All experiments are done with a Convolutional Neural Net-
work as backbone for all models. All benchmarks are trained
in 20 epochs. We use the Adadelta optimizer with a learning
rate of 1.0 and step learning rate  of 0.7. In addition, IQN is
also benchmarked on images that are completely pitch black
(hold no information) to see whether the estimated distribu-
tion agree that it should be very uncertain of its prediction.

Results

Below are the computed statistics for the estimated loss dis-
tribution on the datasets after training. For MNIST exam-
ples, the IQN has a predicted mean 10x higher than the
dataset mean for incorrectly predicted labels while the scalar
model is unable to distinguish as clearly with only a slight
increase in estimated loss.

Scalar Model MNIST CIFAR10 CIFAR100
Mean 0.003 0.301 1.884
Std 0.001 0.300 0.863
Incorrect 0.004 0.407 2.075
Correct 0.003 0.260 1.581
Zeros 0.004 1.205 2.619




IQN Model MNIST CIFAR10 CIFAR100

Mean 0.003 0.315 1.760
Std 0.019 0.314 0.893
Incorrect 0.041 0.458 2.002
Correct 0.003 0.261 1.396
Zeros 0.039 1.144 2.327

Since labels that are predicted incorrectly are more likely
to have a higher estimated loss distribution, by setting a
threshold for the estimated loss, we can then remove the pre-
dictions that are N standard deviation above the mean. This
leads to higher accuracy on the test set. We use dropout of
0.25 after convolutional layers and dropout of 0.50 after the
first linear layer unless stated otherwise.

Original Accuracy MNIST CIFARIO CIFARI00

No Dropout 99.09 70.64 38.16
Scalar 99.19 72.55 38.43
IQN 99.25 73.22 38.72
Accuracy (N=0) MNIST CIFARIO CIFAR100
Scalar 99.73 81.29 50.87
IQN 99.45 81.73 51.68
Accuracy (N=0.5) MNIST CIFARIO CIFAR100
Scalar 99.19 77.90 43.29
IQN 99.38 78.51 46.54
Accuracy (N=1.0) MNIST CIFARIO CIFAR100
Scalar 99.19 74.29 40.52
IQN 99.37 76.54 42.32

Results show that the IQN model consistently outper-
forms the baseline (regressing the loss with a single output).
Note that if we remove all labels with estimated loss bigger
than mean (N = 0), we get a 13% improvement in accuracy
for CIFAR100.

Distributions

According to the results, handwritten digits that are more
ambiguous have a substantially higher loss distribution.
The red line is the mean over all the samples. Each sample
uses 10000 tau samples for the distribution. From the
visualization of the distribution, we see that the pitch black
image has very high estimated loss distribution while clearer
handwritten digits have below average distributions. Even
though the pitch black image is OOD, it is still able to con-
sistently predict a high distribution. An advantage of IQN is
that is it able to capture all the modes of the distribution to
account for different cases (different probability densities)
instead of simply regressing the expected value.

The MNIST and CIFAR100 samples and its predicted
distributions are shown (sample followed by distribution).
The further the distribution is to the right relative to the red
line, the higher the uncertainty.
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Future Work

A promising research direction would be to use this method
to filter out bad data for different modalities (such as out-
liers or incorrect labels). After training the model and IQN,
any data with abnormal estimated loss distribution can be
reviewed and filtered out. This improves the accuracy com-
pared to simply using the real error from the model. If there’s
a 10% chance of a defective label, IQN would be able to



detect that within its distribution, where it can be flagged
for further processing. Future research can also incorporate
FQF which is a descendant of IQN that regress a fixed set of
taus 7 instead of randomly sampling from the uniform dis-
tribution to further improve efficiency by having more fine
grained control over the shape of the distribution.

Conclusion

Our work shows that Implicit Quantile Network is not only
beneficial to account for randomness in reinforcement learn-
ing settings but can also be used to estimate uncertainty
in supervised learning settings. For all the experimented
datasets, this method improves accuracy by approximating
the distribution of the loss and removing data associated
with high loss distributions.

This simple alternative could be crucial for applications
where using ensemble learning to train multiple copies of
the same model is not computationally feasible. This work
have practical applications in medical diagnosis, financial
systems and self-driving where predictions that are more
likely to have a high error can be disregarded (e.g. for safety
concerns or losses in equity). This paper proposes a sim-
ple add-on for deep learning models to estimate uncertainty.
We advocate that high stakes applications should adopt this
method to provide potentially crucial information.
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